
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 1

PRORL: Proactive Resource Orchestrator for
Open RANs using Deep Reinforcement Learning

Alessandro Staffolani , Victor-Alexandru Darvariu , Luca Foschini, Michele Girolami,
Paolo Bellavista and Mirco Musolesi

Abstract—Open Radio Access Network (O-RAN) is an emerg-
ing paradigm proposed for enhancing the 5G network infras-
tructure. O-RAN promotes open vendor-neutral interfaces and
virtualized network functions that enable the decoupling of
network components and their optimization through intelligent
controllers. The decomposition of base station functions enables
better resource usage, but also opens new technical challenges
concerning their efficient orchestration and allocation. In this
paper, we propose Proactive Resource Orchestrator based on Re-
inforcement Learning (PRORL), a novel solution for the efficient
and dynamic allocation of resources in O-RAN infrastructures.
We frame the problem as a Markov Decision Process and solve
it using Deep Reinforcement Learning; one relevant feature
of PRORL is that it learns demand patterns from experience
for proactive resource allocation. We extensively evaluate our
proposal by using both synthetic and real-world data, showing
that we can significantly outperform the existing algorithms,
which are typically based on the analysis of static demands.
More specifically, we achieve an improvement of 90% over greedy
baselines and deal with complex trade-offs in terms of competing
objectives such as demand satisfaction, resource utilization, and
the inherent cost associated with allocating resources.

Index Terms—O-RAN, reinforcement learning, resource allo-
cation, multi-objective optimization

I. INTRODUCTION

ONE of the aims of the fifth-generation (5G) cellular
network infrastructure is to provide very high data rates

with extremely low latency and Quality of Service (QoS) im-
provements for the final users. In response to these challenges,
providers have implemented new technologies such as massive
Multiple Input, Multiple Output (MIMO) [1], millimeter wave
and sub-terahertz communications [2], network-based sens-
ing [3], virtualization through Network Functions Virtualiza-
tion (NFV) and Software-Defined Networking (SDN) [4], and
Machine Learning (ML)-based digital signal processing [5],
among others. These solutions enhance network capabilities
but also come at the expense of increased management com-
plexity and cost for the operators. To mitigate this complexity
and avoid vendor lock-in, the Open-RAN (O-RAN) Alliance
[6] has defined and standardized open interfaces in order to

Manuscript received July 17, 2023; revised January 30, 2024.
Alessandro Staffolani, Luca Foschini, Paolo Bellavista and Mirco Musolesi

are with the Department of Computer Science and Engineering, Univer-
sity of Bologna, Bologna, Italy. E-mail: alessandro.staffolani, luca.foschini,
paolo.bellavista, mirco.musolesi@unibo.it.

Alessandro Staffolani and Michele Girolami are with the National Coun-
cil of Research Italy, ISTI-CNR, Pisa, Italy. E-mail: alessandro.staffolani,
michele.girolami@isti.cnr.it.

Victor-Alexandru Darvariu and Mirco Musolesi are with the Department
of Computer Science, University College London, London, UK. E-mail:
v.darvariu, m.musolesi@ucl.ac.uk.

decouple hardware from software for enhanced flexibility and
to enhance the support and usage of AI solutions for network
operations and management.

O-RAN extends the 3GPP NR 7.2 split for base stations [7],
which disaggregates their functions into a Central Unit (CU),
a Distributed Unit (DU), and a Radio Unit (RU) (called O-CU,
O-DU, and O-RU respectively in the O-RAN specifications).
CUs and DUs are virtualized on-edge cloud servers, while RUs
are deployed at cell sites. Moreover, O-RAN connects base
station functionalities to intelligent controllers, also known
as RAN Intelligent Controllers (RICs), which have visibility
of network performance indicators and are utilized to aggre-
gate Key Performance Measurements (KPMs) for supporting
closed-loop control applications for the overall infrastructure.
In the O-RAN specifications, these controllers are categorized
as near-real-time RICs and non-real-time RICs [8].

The advantages of the O-RAN architecture are many: it
allows for better usage and management of resources thanks
to virtualization, centralization, and dynamic reallocation; it
can reduce management costs and generate significant energy
savings; and it enables the potential augmentation of network
capacity through the addition of virtual resources to its logi-
cally centralized pool.

In this paper, we present Proactive Resource Orchestrator
based on Reinforcement Learning (PRORL), a novel solution
for dynamic orchestration and management of resources in O-
RAN. PRORL is an adaptive learning-based orchestrator that
learns patterns in the demand from experience and uses them
to proactively allocate resources by considering the expected
effect over future time windows.1

More specifically, we target a three-tier network infrastruc-
ture with O-RAN components (see Figure 1): at the highest
level (Regional Cloud), we place the resource pool, which is
directly connected to the core network in a regional cloud data
center. In the middle (Edge Cloud), the infrastructure hosts
edge data centers, also called Points of Presence (PoPs), which
communicate through the O1 interface [9] to the Regional
Cloud: PoPs are responsible for sharing the resources received
from the upper tier to the CUs, DUs and the lower tier, thanks
to CU’s Radio Resource Control (RRC) [10] and Service
Data Adaptation Protocol (SDAP) [11] layers, which manage
the connection lifecycle and the Quality of Service of the
traffic flows (also known as bearers). The last tier (Cell Site)
consists of RUs that receive capacity from DUs of their PoP.
PRORL is strongly original in its proposal of a learning-

1Note that for the actual virtualized resource movement and placement,
PRORL integrates with external and existing Network Functions Virtualization
(NFV) management frameworks.

https://orcid.org/0000-0003-0886-2548
https://orcid.org/0000-0001-9250-8175
https://orcid.org/0000-0001-9250-8175


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 2

Core Network

Regional Cloud

O1 Interface O1 Interface

Open Fronthaul

Fiber

Regional Cloud

Edge Cloud

Open Fronthaul

Cell Site
RU

RU

RU

RU

RU

RU

RU

RU

Edge Data Center (PoP)

CU and DUs

Resource Pool

Edge Data Center (PoP)

CU and DUs

(Tier 2)

(Tier 1)

(Tier 0)

Non-RT RIC

PRORL rApp

Agent

Fig. 1. Graphical overview of our reference multi-tier O-RAN architecture.

based orchestrator installed on the Regional Cloud as an
rApp that controls the pool of currently available resources
and is responsible for suitably allocating them to the PoPs.
It is worth mentioning that the O-RAN PRORL rApp is a
plug-and-play component that implements custom logic in
the O-RAN ecosystem. It directly communicates with non-RT
RICs to collect network-related KPMs and to inject resource
management policies.

In comparison with the currently deployed O-RAN-related
solutions, we strongly believe that PRORL advances the state-
of-the-art in terms of effective and efficient use of resources. In
fact, current base stations are usually provided with sufficient
resources for accommodating peak hours, which then remain
over-provisioned for the rest of the day [12]. On the contrary,
our orchestrator can react to rapid changes in loads and,
simultaneously, proactively move resources while maintaining
an adequate QoS. In this way, it can also reduce the total
capacity required in the system and the Operating Expenditure
(OPEX) for reallocating the resources between PoPs.

Design Challenges. In order to design PRORL, we ad-
dressed a series of challenges related to resource allocation:

1) Allocation strategy: an effective and efficient strategy is
required for orchestrating resources among PoPs. The
strategy has to select PoPs that will receive additional
resources taken either from the pool or from other nodes
that have exceeding capacity with respect to their current
demand. It also has to optimize PoP satisfaction (by al-
locating sufficient capacity to them) and, simultaneously,
to avoid wasting resources by over-provisioning.

2) Adaptability to demand dynamics: demand varies over
space and time due to the variety of users, applications,
and services that use the network. The solution has to

address demand dynamics in a proactive manner in order
to move resources before they are needed (proactivity of
the strategy). Furthermore, the enforced strategy must be
able to react quickly to unexpected changes (reactivity of
the strategy).

3) Movement cost: moving resources carries an inherent cost
due to the de-activation and re-allocation of resources on
different edges of the network deployment environment.
Thus, the allocation strategy needs to take into account
the number of resource movements.

Our Contributions. The main contributions of this paper
can be summarized as follows:

1) We model the capacity allocation problem as a decision-
making process in which PoPs have to serve connectivity
to the underlying O-RAN components. An agent has to
move resources from the centralized pool to the PoPs
according to their aggregated demand; the agent deci-
sion is guided by a numerical reward signal based on
an objective function to be maximized. We design our
original objective function in order to balance multiple
competing objectives weighting their effects; namely, we
optimize system satisfaction, resource utilization, and the
cost associated with resources movement (the OPEX). We
formulate the problem in the Markov Decision Process
(MDP) framework and solve it using Deep Reinforce-
ment Learning. Our novel model architecture features a
decomposition of the action space, which allows for a
substantially faster convergence of the agent.

2) We extensively evaluate our solution using a pub-
licly available dataset composed of Call Detail Records
(CDRs) collected in the city of Milan for two months in
2013, which are considered a solid use case in the related
literature [13]. We also analyze the effect of different
trade-offs among the three objectives that PRORL can
optimize in order to show the flexibility of the proposed
approach. Finally, we conduct a sensitivity analysis us-
ing realistic synthetic data to experimentally study the
robustness of the model when dealing with challenging
scenarios, such as immediate demand peaks or system
overloading.

Main Results. Our experimental evaluation over both real
and synthetic data shows that PRORL can achieve signifi-
cantly better performance in comparison with baseline greedy
solutions. Moreover, our approach can effectively deal with
complex trade-offs in terms of competing objectives. PRORL
is flexible enough to outperform the baselines over multiple
trade-off configurations, with an average improvement of 90%
over them. We also prove the robustness of our approach,
evaluating it on 4 different challenging scenarios using syn-
thetic data. The results confirm the superiority of PRORL in all
considered scenarios, with improvements in single objectives
of up to 10× the performance of the baselines.

II. RELATED WORK

The problem of resource optimization in RAN can be
divided into low-level and high-level resource allocation prob-
lems. The former addresses allocation at levels close to the



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 3

TABLE I
SUMMARY OF THE DIFFERENCES BETWEEN OUR WORK AND HIGH-LEVEL O-RAN RESOURCE ALLOCATION STATE-OF-THE-ART.

Citation Description Allocation Algorithm Deployment Optimization
Horizon

Real Data Evaluation

[14] Two-step system: forecasting model to accurately model and
predict the traffic volume and handover count, and constrained
optimization problem.

Multivariate Long Short Term Memory
(MuLSTM) model for the forecasting step,
Resource-Constrained Label-Propagation
(RCLP) algorithm for the optimization
problem.

C-RAN
environments.

One-step look ahead
based on forecast
prediction.

✓

[15] Reinforcement Learning approach to map the split between
CUs and DUs functionalities in order to optimize the energy
consumption in green O-RAN.

Q-learning and SARSA. Green O-RAN envi-
ronments.

The agent optimizes
the objective over
long time horizons.

✓

[16] An algorithm to improve User Equipment (UE) placement tak-
ing into account radio quality, bandwidth, and user distribution.

Hand-crafted heuristic algorithm O-RAN
environments.

Current step. ✗

[17] Deep Reinforcement Learning approach to solve radio resource
slicing and priority-based core network slicing in order to
optimize Spectral Efficiency, Quality of Experience, and Service
Function Chain execution time.

DQN. Network Slicing. The agent optimizes
the objective over
long time horizons.

✗

[18] A collaborative learning framework that combines Deep Learn-
ing and Reinforcement Learning with the goal of improving
resource-multiplexing gain among slices while meeting specific
service requirements for radio access network (RAN) slices.

LSTM for traffic prediction, A3C for the
scheduling decision.

Network Slicing in
RAN environments.

The agent optimizes
the objective over
long time horizons.

✗

PRORL PRORL frames the problem of dynamic orchestration and
management of resources in O-RAN as a MDP in which a
centralized agent learns patterns of demand to move resource
units from the pool to the PoPs and vice versa, in order to
optimize multiple competing objectives.

Double DQN with prioritized experience
replay and dueling network, using a split
design to reduce action space dimension.

O-RAN
environments.

The agent optimizes
the objective over
long time horizons.

✓

physical layer, such as spectral efficiency, radio resources, and
power allocation, which typically involves control of RUs and
sometimes DUs. The latter addresses orchestration problems
further up the stack such as deployment, cell selection, and
CU/DU control by activation and deactivation. Our proactive
orchestrator belongs to the high-level resource allocation class.
To the best of our knowledge, PRORL is the first attempt to
address the problem of orchestrating resources among different
pools while optimizing multiple conflicting objectives. Fur-
thermore, it considers the effect of allocations over multiple
timesteps, during which the demand naturally varies, and it is
evaluated on both synthetic and real-world data.

Low-Level O-RAN Resource Allocation. In the context
of Heterogeneous Cloud Radio Access Networks (H-CRANs),
Peng et al. propose two optimization problems [19], [20]. In
the first work, the authors mitigate inter-tier interference while
optimizing energy efficiency by assigning resource blocks and
transmission power. The optimization problem is formulated as
a non-convex fractional program, which is solved by means of
the Lagrange dual decomposition. The second work focuses
on the impact of the cost of different types of fronthaul in
C-RAN. The authors propose a joint optimization of energy
efficiency and the wired/wireless fronthaul cost. The problem
is formulated as a non-convex beamformer problem that con-
strains fronthaul capacity and transmission power. It is solved
by developing an outer-inner loops algorithm. In the outer
loop, the primal problem is transformed into an equivalent sub-
problem using the bisection search method while, in the inner
loop, the sub-problem is solved by the weighted minimum
mean squared error approach. In the O-RAN context, Wang
et al. [21] study the RU-DU resource assignment problem
in O-RAN. They model the problem as a 2D bin packing
problem and present a deep reinforcement learning agent
with Monte Carlo tree search to solve the problem. They
evaluate their solution both on synthetic and real-world data,
discovering improved policies for resource assignment in

diverse network conditions. In [22], a reinforcement learning
solution dynamically adapts the per-flow resource allocation,
modulation, and coding scheme in order to satisfy the traffic
flow requirements. In [23], reinforcement learning methods are
proposed to manage sessions for ultra-reliable and low latency
communication (URLLC).

High-Level O-RAN Resource Allocation. In [24] and
[14], Chen et al. propose a two-step system for mapping
virtualized resources in H-CRAN environments. A traffic
forecasting model is used for predicting the demand in the next
time window. The authors define a constrained optimization
problem to find the best mapping given the predicted demand.
They evaluate both approaches using real-world data. How-
ever, even if the mapping of resources employed by the authors
is conceptually similar to that presented in our work, these
solutions do not consider the effect of the demand variation
over subsequent time intervals, relying instead on the accuracy
of the next prediction. Similarly, in [15], Pamuklu et al. pro-
pose a reinforcement learning solution for mapping the split of
functionalities between CUs and DUs in Green O-RAN, where
the objective is to reduce energy consumption while utilizing
renewable energy sources. In [16], the authors propose an
algorithm to improve User Equipment (UE) placement taking
into account radio quality, bandwidth, and user distribution.
Finally, several works address the problem of Network Slicing
using deep reinforcement learning [17], [18], [25]–[28], which
involves the allocation of resources to create network partitions
where different policies and QoS requirements can be met.
In contrast, our approach aims to support a finer level of
granularity by orchestrating the pool of resource units.

III. BACKGROUND

In this section, we briefly introduce the theoretical frame-
work used in this work. Firstly, we introduce the classic single-
objective reinforcement learning problem. Then, we present
the challenges of optimizing multiple objectives, as is the case



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 4

Apply action

Reward

Environment

Aggregate

Demand

Aggregate

Demand

Regional Cloud

Resource

Pool

Point of Presence 1

Point of Presence M

Pool Capacity

PoP Capacity

and Demand

PoP Capacity

and Demand

Agent

State Action

Fig. 2. PRORL at a glance. The environment is composed by the resource pool and PoPs. A state is derived from the environment representing the demand
and capacity of the nodes and the pool. The state is given as input to the agent that outputs the action to be taken. The actions consist of a movement of
resource units, which results in a new configuration.

in the problem setting of PRORL. Finally, we provide an in-
depth discussion about the implementation of the proposed
algorithm.

Single-Objective MDP. Markov Decision Processes are
used to model a learning process based on interactions [29].
The learner and decision-maker is usually called an agent. The
agent interacts with the environment (in our case the O-RAN
system) at discrete time steps t = 0, 1, 2, ..., T . At each time
step t, the agent receives a representation of the environment
(defined as a state) St ∈ S and selects an action At ∈ A(St).
S is the set of the possible states and A(St) is the set of
possible actions in state St. As a consequence of the action, the
agent receives a reward Rt+1 and enters a new state St+1. The
goal of the agent is to define a policy π(At|St), a probability
distribution over actions for a given state, which maximizes
the discounted return:

Gt =

T∑
k=0

γkRt+k+1 (1)

where Rt+k+1 is the reward at time t+k+1 and γ a discount
rate with 0 ≤ γ ≤ 1. We then define the state-value function
given a policy π as Vπ(s) = Eπ[Gt|St = s], which is the
expected discounted return when following the policy π from
the state s onwards. We also define the action-value function
given policy π as Qπ(s, a) = Eπ[Gt|St = s,At = a], i.e., the
expected discounted return when taking action a in state s then
following the policy π. In deep reinforcement learning, the
policy π is typically parametrized using a deep neural network
with parameters θ.

Multi-Objective MDP. The Multi-Objective Markov De-
cision Process (MOMDP) captures problems with more than
one objective to be optimized. The only difference compared
to the standard MDP is that, instead of a scalar, the reward
function R : S × A → Rd returns a vector of rewards,
one for each objective, with d ≥ 2 indicating the number
of objectives [30]. Therefore, the value of a state Vπ(s) =
Eπ[
∑∞

k=0 γ
kRt+k+1|St = s] given a policy π is also a vector

(please note that we use bold fonts for indicating vectors).

In contrast to single-objective MDPs, in MOMDP we cannot
define a natural order between different policies without any
additional information about how to prioritize them, because
the value of a policy can be ambiguous. A typical method
for finding solutions for a MOMDP is to use the utility-
based approach. We define a utility function (also known as
scalarization function) that projects the multi-objective value
Vπ to a scalar value:

V w
π (s) = U(Vπ(s),w) (2)

where w is the weight vector parametrizing U . The scalar-
ization can be either linear or non-linear and, depending on
this choice, we can find different solutions to the problem. For
simplicity, in this work, we assume that a linear combination of
the objectives is sufficient to capture the trade-offs between the
different desiderata. The full formulation of the linear utility
function is given in Section IV, Equation 9.

Decision-Making Algorithm. The choice of a linear utility
function gives the added benefit that any single-objective RL
algorithm is applicable. Therefore, we use the DQN [31], [32],
which is an off-policy value-based method that is more data-
efficient with respect to on-policy methods. This last advantage
is a critical aspect in a real and complex environment such as
that of O-RANs, where data acquisition is expensive.

DQN uses a function approximator (typically a deep neural
network) for parametrizing, with weights θ, the action-value
function Q̂(s, a, θ). Further to tabular Q-learning, DQN lever-
ages the experience replay and the target network Q̂−. The
former [33] consists of storing tuples of agent’s experience
⟨St, At,Rt, St+1⟩ in a replay buffer D and sampling a mini-
batch at each learning step. It allows for better data efficiency
and reduces the variance in the updates. The latter makes the
DQN more stable by copying the weights θ of the online
network to those of the target network θ− every C steps.

In the past years, the research community has proposed
several improvements to the original DQN algorithm [34],
some of which we use in our implementation. In particular,
we adopt the Double DQN [35] updates, which are able to



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 5

Points of Presence Set

Resource Pool

b1 b2 bK

n1 n2 nM

(a)

Resource Pool

b1 b2 bK

Points of Presence Set

fadd(n2)

n1 n2 nM

(b)

Resource Pool

b1 b2 bK

Points of Presence Set

fremove(n1)

nMn2n1

(c)
Fig. 3. (3a) Graphical representation of the pool B and the PoPs set N .
(3b) Example of movement following the execution of fadd. (3c) Example
of movement following the execution of fremove.

deal with the problem of the overestimation of Q-values of
the original approach. We also adopt prioritized experience
replay [36], which, instead of sampling uniformly from the
replay buffer, samples entries proportionally to a weight, which
is a function of the Temporal Difference (TD) estimation
error, hence prioritizing “important” transitions. We opt for
the variant of PER that determines weights corresponding
to the last encountered absolute TD error, which has been
shown to be highly performant yet computationally efficient.
Finally, we use the dueling network approach proposed by
Wang et al. [37], which modifies the Q-network architecture
by splitting the last layer into two branches that output
the advantage and value respectively. The two branches are
subsequently factorized in order to obtain the Q-values in
output. Indeed, this technique allows for better generalization
across the actions.

IV. RESOURCE ORCHESTRATION WITH PRORL
In this section, we present the design and implementation

of PRORL, our resource orchestrator solution, illustrated in
Figure 2. We firstly describe the associated MDP starting from
the concepts introduced in the previous section. Practically, the
agent uses the system status as input and outputs the action
(a reconfiguration of resources) that is applied to the network
deployment environment, which is composed of the resources
pool and the PoPs. The environment provides the agent with
the new status and the reward associated with the allocation.

A. Problem Formulation
Formally, we are given a resource pool B = {b1, ..., bK}

initialized with K units, each of size σ and a set of PoPs

N = {n1, ..., nM} (also referred to as nodes) of cardinality
M , where K ≫ M , as shown in Figure 3a. Each node ni

is described by the tuple ⟨dt,ni
, ct,ni

⟩. The demand dt,ni
∈

R represents the load on the node ni at time t obtained by
aggregating all the demand in the controlled area, while the
capacity ct,ni

∈ N represents the number of resource units
allocated to node ni. We note that the system is able to control
the allocated capacities, while the demands are external.

The system allows performing two resource unit movements
(i.e., sub-actions) per time step t. The former, fadd(nadd),
allows moving one resource unit from the pool B to a PoP
nadd, illustrated in Figure 3b. The latter, fremove(nremove),
allows releasing one resource unit from a PoP nremove, with
nadd ̸= nremove, illustrated in Figure 3c. Moving a resource
unit from the pool means activating and allocating it into
its new location. Conversely, releasing a resource unit means
deactivating and moving back to the pool. Every time a
resource unit is allocated or released a cost κ is incurred.
In addition, for each movement, the system allows waiting
(performing no movement), which incurs a cost κ = 0.

We define ∆t,ni = ct,ni − dt,ni as the difference between
the capacity and demand for node ni at time t. Given a target
τ , our objective is:

min

T∑
t=0

(
M∑
i=0

ct,ni

)
(3)

+ κ1(A1
t ̸= wait) + κ1(A2

t ̸= wait) (4)
s.t. ∆t,ni ≥ τ, ∀ni ∈ N , (5)

where 1 is the indicator function, which is equal to 1 if the
condition expressed as argument is true and 0 otherwise, while
A1

t and A2
t are the two sub-actions, respectively. Intuitively,

over a time horizon of T steps, we need to minimize the
allocated capacities (first term of the sum) and the cost
of movements (second and third term) while satisfying the
demands requested by the nodes (the constraint).

The presented problem shares significant similarities with
the field of Inventory Management [38], where it is necessary
to determine the quantity of stock (capacity) allocated to each
warehouse (node). In this context, the Dynamic Capacitated
Lot-Sizing problem is recognized as NP-hard [39]. In addi-
tion, also the Unit Commitment problem in electrical power
production shares similarities and is known to be NP-hard [40],
[41]. Hence, deriving the optimal solution to large instances of
the problem is intractable, particularly given the hidden nature
of demands, necessitating adjustments to accommodate its
variability. Due to these challenges, we posit that an approach
like PRORL, providing approximate solutions, is needed.

In order to simplify the presentation, without loss of gen-
erality, we set τ = 0 and the time step size t to 1 hour for
the remainder of the paper. The time step size influences the
resolution at which the demand is collected and evaluated.
The choice of the time interval is of key importance. If it is
too short, the changes might be temporary and, in general,
very noisy. If it is too long, the algorithm will not be able to
adapt to non-negligible demand variations that might happen
between the two sampling points. Figure 5 shows that, for the
considered real-world dataset, this is an appropriate level of



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 6

Agent

Environment

State

State

nadd

nremove

nadd,nremove

Action

Remove Sub-Agent

Add Sub-Agent

Fig. 4. PRORL agent decomposition into two sub-agents.

granularity to consider. It is worth noting that, given a scenario
with different demand variability, our approach can support a
significantly smaller granularity that approaches real time. In
general, using a learned model in such optimization problems
may be appropriate when decisions need to be made rapidly
and running a solver is unfeasible [42].

B. Definition of the MDP

We now present the formulation of the orchestration prob-
lem underlying PRORL as an MDP, discussing the action and
state spaces and the chosen reward structure.

Actions and Decomposition of the Action Space. The
agent is a logically centralized component that receives the
current environment state as input, selects actions and im-
proves its policy in order to maximize the reward received.
In this work, we split the agent in two components in order to
reduce the dimension of the action space. The actions consist
of either waiting or adding (removing) resources from one
of the M nodes. Therefore, the combined action space has
dimension (M + 1)2. On the other hand, if we decompose
the action into two independent sub-actions, the overall action
space dimension becomes (M + 1) + (M + 1) = 2(M + 1).
A smaller action space allows for a quicker learning process
given the reduction of its size, as experimentally demonstrated
in the evaluation section.

We therefore implement two independent agents that act
sequentially as depicted in Figure 4. We refer to them as
the add and remove sub-agents, respectively. Furthermore,
before each step, the environment shrinks the two action
spaces if some criteria are met, in order to prevent invalid
actions. For the add sub-action, the space is reduced to contain
only the wait action if the current capacity of the pool B is
zero. Instead, for the remove sub-action we disable the index
corresponding to the node selected as nadd, if it is not the wait
action, and we disable nodes with zero allocated capacity.

States. The state should encapsulate all the relevant infor-
mation about the environment that is useful to the agent for
selecting actions. More specifically, for our resource orches-
tration problem, it must capture the capacity of the nodes and
the pool, as well as the demand in different locations. The
state of each sub-agent contains the following information:

• Pool capacity: the current dimension of the pool B. This
feature tells the agent the number of currently unallocated
resource units that can be moved to the nodes.

• Node capacity: a vector of dimension M with one entry
representing the current capacity ct,ni for each node ni.

• Node demand: a vector of dimension M with the current
demand dt,ni

for each node ni.

Fig. 5. Demand variation over 8 weeks for the nodes selected for evaluating
PRORL. The data are from the network traces [13] gathered in the city of
Milan in 2013.

• Capacity surplus: a vector of dimension M , whose ele-
ments are the current differences between capacity and
demand ∆t,ni

for each node ni. This feature, although
in principle redundant (since it is a linear combination
of other features), is an inductive bias that has proven
beneficial in preliminary experiments.

• Current time: a one-hot encoding of the hour and the day
of the week of the current time step. This feature lets the
agent associate patterns in demands with a time interval,
in effect capturing seasonality in the data.

• Remaining attempts: it is a scalar value that tells the
agent the number of attempts remaining in the current
episode (please refer to the Trajectory Pruning paragraph
for additional details).

The state of the remove sub-agent contains an additional
piece of information, namely, the one-hot encoding of the
sub-action selected by the add sub-agent, i.e., the index of
the selected node or a vector of zeros if wait is selected. The
add sub-action feature is used by the remove sub-agent for
coordination. Furthermore, all the state features are normalized
in order to have values between 0 and 1. Moreover, for the
demand-related features, we also divide the values by the
resource unit capacity and apply the ceiling function ⌈x⌉. By
doing so, we transform the demand into an integer value and
we reduce the number of possible states, which leads to a more
efficient learning process.

Rewards. The reward signal is used to discriminate be-
tween beneficial and non-beneficial actions. The quality of the
decision does not directly impact the placement of a single
service, since our solution governs the allocation of resource
units at the underlying Points of Presence (PoPs), which are
then responsible for ensuring the Quality of Service (QoS) for
individual users. We define three different reward signals, one
for each component of the objective. Therefore, at each time
step t, the vector of rewards is Rt = {Rsurplus

t , Rcost
t , Rgap

t }.
The first component, corresponding to term 3, measures the

unused resources, which are essentially wasted. We define the
surplus as the number of unused units on every node in order
minimize the units allocated on all the nodes:

Rsurplus
t = −

M∑
i=1

∆t,ni
1(∆t,ni

> τ) (6)



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 7

Fig. 6. PRORL validation total utility during training for the four setups (higher is better). Note that, while the number of episodes within an iteration may
differ due to the trajectory pruning mechanism, the rightmost point in all the four plots corresponds to the same 336000 steps.

where 1 is the indicator function, which is equal to 1 if the
condition expressed as argument is true, 0 otherwise. The
second and third components of term 4 are the costs associated
with resource movements. We use the following reward:

Rcost
t = −κ1(A1

t ̸= wait)− κ1(A2
t ̸= wait) (7)

where A1
t and A2

t are the two sub-actions respectively.
The final component (corresponding to the constraint 5)

measures the level of satisfaction of the nodes. The remaining
gap is defined as the number of units that would be necessary
in order to satisfy the constraint for every node. The corre-
sponding reward signal at time step t is:

Rgap
t = −

M∑
i=1

∆t,ni
1(∆t,ni

< τ) (8)

Utility Function. The utility function is used for composing
the rewards that drive the learning process. As discussed in
Section III, we adopt the following linear utility function:

U(Rt) = wsurplusϕ(R
surplus
t )+wcostϕ(R

cost
t )+wgapϕ(R

gap
t ) (9)

where wsurplus+wcost+wgap = 1. The values of the weights
are set according to the requirements of the designer of the
system. Different sets of values will lead to different trade-
offs, an aspect that is discussed in Section VI. Additionally,
ϕ(R) is a normalization function applied to the rewards before
combining them. We normalize the rewards in order to weigh
values with the same magnitude. More specifically, the goal
is to obtain values in the range [0, 1], where 0 corresponds to
the worst value and 1 to the optimal one.

Trajectory Pruning. We also implement a mechanism for
pruning sub-optimal trajectories during the training of our
model. At initialization time, the environment starts with D
attempts and, after each time step, we compute the number of
unsatisfied nodes, i.e., the number of nodes with ∆t,ni < τ .
If the number of nodes for which the demand is not satisfied
is greater than 0, an attempt is lost. When the environment
reaches zero attempts, the episode terminates. This has the
effect of discarding clearly sub-optimal trajectories, encourag-
ing the agent to maintain longer episodes during which higher
returns can keep being received. We note that this technique
is also called “early termination” in some RL works.

Computational Complexity. For performing inference, our
solution involves interacting with two sub-agents at every time

Fig. 7. Example of synthetic data generated for the four scenarios used for
sensitivity analysis.

step, as depicted in Figure 4. The interaction requires building
the representations of the two states, applying the action
shrinking in order to disable unavailable actions, and per-
forming the forward passes of the policies of the sub-agents.
Assuming that the sizes of the neural networks remain constant
in terms of number of layers and number of units in the hidden
layers, each of the steps has complexity O(M). Therefore, the
overall computational complexity of our approach is O(M),
i.e., linear in the number of nodes. The training cost cannot
be expressed analytically given the dependence on the number
of steps to convergence, which is challenging to determine
in reinforcement learning with neural networks for function
approximation. Therefore, we assess convergence empirically
by studying the validation performances, as shown in Figure 6.
In practice, the models take approximately 5 hours to train for
the real-world data case on a single Nvidia RTX A5000 GPU.
Above all, it is worth noting that training represents a one-off
cost, and retraining the network might become necessary only
if there is a substantial change in demand patterns.

V. EXPERIMENTAL SETUP

In this section, we first present the experimental setup used
for evaluating our solution by means of synthetic and real-
world data. We then describe the scenarios that are adopted



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 8

for our sensitivity analysis. Finally, we discuss the different
baselines that are used to evaluate the performance of PRORL.

A. Real-world Data

Dataset. We evaluate PRORL using a publicly available
dataset composed of network traces gathered in the city of
Milan for two months in 2013 [13]. Herein, the position of
the base stations is hidden, while data is collected over square
cells with a size of 235 × 235 m2. Inside each cell, traffic
volume is aggregated and anonymized every ten minutes. A
new trace is generated every time a user receives or sends SMS
/ calls or an Internet connection starts / ends. We then combine
the position of the grid cells with the estimated position of real
base stations obtained from a public dataset [43].

In our experiments, we consider 12 base stations that corre-
spond to the PoPs set N . Since the distribution of demands is
highly skewed – most base stations have very low demands,
while a few handle the majority of traffic – we discard the
ones with the lowest peaks in the dataset, since they would
represent an unrealistic PoP, where a single resource unit is
always underutilized due to the low resource requirement. To
consider a challenging scenario for resource allocation, we
choose 6 unique pairs of base stations characterized by the
highest distance in terms of demand profile over time. By
doing so, we select nodes for which demand peaks at different
times of the day or the week. Figure 5 presents the demand
for the selected nodes over the 8 weeks of data.

Training and Evaluation Procedure. We train our solution
by cycling through the data of the training set for a total
of 336000 steps. The number of training steps is chosen
empirically on the basis of validation performance, which
improves rapidly in the early stages of training while tending
to plateau as training progresses, as shown in Figure 6.2 Every
time the entire training set is seen by the agent or the attempts
D are exhausted, an episode terminates. Every five episodes,
a validation run is performed over an unseen set of data (the
validation set), and the agent’s model is saved if a new best
score is obtained. At the end of training, the model that obtains
the best score at validation time is evaluated over an additional
set of unseen data, the evaluation set. We obtain the three
datasets from the 8 weeks by temporally splitting the data: 6
weeks for the training set and one week for the validation and
the evaluation sets respectively. The performance we report
refers to the score obtained on the evaluation set. To ensure
statistical validity of the results, we use 10 runs, each using a
different random initialization of neural network parameters.

Agent Setup. We use a fully-connected network with
ReLU activations and number of hidden layer units
∈ {{64, 128, 64}, {64, 128, 256, 128}}, trained using the
Adam optimizer [44]. We consider learning rates lr ∈
{0.001, 0.005, 0.0001, 0.0005} and batch sizes batch size ∈
{32, 64, 128, 256}. The exploration is based on an ϵ-greedy
policy, with ϵ linearly decreased from 1 to 0.05 during the

2We are also aware that more complex problem settings (e.g., more PoPs)
would likely require more training steps. However, determining a priori how
many steps are required to attain satisfactory performance is generally not
possible in the RL with function approximation setting, requiring this type of
empirical methodology that we have followed in our experimentation work.

first half of the training and fixed to 0.05 for the remaining
steps. The replay buffer has a capacity equal to 10000 and we
start filling it with 9000 steps of bootstrapping in which we
perform no learning and a random policy is used. The target
network update frequency is 1000, and we use a discount
factor γ = 0.99. From a grid search, we find that the best
performance is achieved with the following set of values:
lr = 0.005, batch size = 256 and net = {64, 128, 64}.

Environment Setup. Overall, we set the environment with
180 available resource units with size σ = 890, where the total
number of units is obtained from the base station density we
observe from the dataset, whereas σ is set in order to have a
total demand at most equal to the 80% of the total capacity.
We initialize the environment with 10 units for each PoP, while
the remaining are set in the pool B. We use D = 150 attempts,
having explored values of D ∈ {150, 300, 600, 1000}.

We set τ = 0 and the time step size t to 1 hour. The time
step size influences the resolution at which the demand is
collected and evaluated. The choice of the time interval is
of key importance. If it is too short, the changes might be
temporary and, in general, very noisy. If it is too long, the
algorithm will not be able to adapt to non-negligible demand
variations that might happen between the two sampling points.
Figure 5 shows that, for the considered real-world dataset, this
is an appropriate level of granularity to consider. It is worth
noting that, given a scenario with different demand variability,
our solution can support a significantly smaller granularity
that approaches real time, as the average time required to
execute one decision is less than 2 milliseconds. In general,
the use of a learned model in such optimization problems may
be appropriate when decisions need to be made rapidly and
running a solver is unfeasible [42].

Finally, we train and evaluate PRORL using four different
configurations of weights for our utility function (Equation 9):

• Efficiency: we prioritize optimization of the Rsurplus com-
ponent by using the weights {wsurplus = 0.6, wcost =
0.05, wgap = 0.35};

• Balanced: We balance the trade-off between the objec-
tive components by using the following set of weights
{wsurplus = 0.3, wcost = 0.1, wgap = 0.6};

• Quality of Service: we prioritize optimization of the
demand satisfaction component Rgap by using the weights
{wsurplus = 0.2, wcost = 0.05, wgap = 0.75};

• Strict Quality of Service: we optimize mainly Rgap while
disregarding the cost, by using the weights {wsurplus =
0.1, wcost = 0, wgap = 0.9}.

We note that the weight associated with the cost wcost is
always smaller than the others since, if it is given too high
importance, the behavior of the agent degenerates into always
waiting (since it does not incur a cost).

B. Sensitivity Analysis

We train and evaluate PRORL considering four challenging
cases in order to demonstrate the robustness of our solution.
We use a synthetic data generator where the demand is drawn
from a set of Gaussian distributions. The generator allows
for setting different values of means and standard deviations



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 9

Fig. 8. Cumulative utility at evaluation time over the real-world dataset for the different utility setups (the higher the better).

Fig. 9. Cumulative surplus, cost (for both the lower the better), and remaining gap (the higher the better) at evaluation time on the real-world dataset for the
different utility setups. These results illustrate the ability of PRORL to differently prioritize components of the utility function, depending on their weights.

and to create peaks of demand with periodic or sporadic
patterns over a given time interval. In particular, we create
four different scenarios, as depicted in Figure 7:

1) Constant demand: we keep the demand constant on
average for the entire week, as shown in the top left
part of Figure 7. It is a simple case, however, for which
proactivity in the allocation does not give any gains.

2) Local overdemand: we keep the demand constant for
most of the week, but twice in a week peaks of demand
occur for some hours at a given node, as shown in
Figure 7 top right. This scenario represents a relevant
test for a proactive agent that aims to learn when the
peak will occur and prevent cases in which the demand
is not satisfied or resources are wasted.

3) Weekly patterns: we simulate a typical week in an urban
area, in which a clear distinction between residential and
business districts is present. During the weekdays, people
commute from home to work during the morning and
vice-versa in the evening, while on the weekend demand
peaks occur in different areas (see Figure 7 bottom left).

4) Global overdemand: we analyze a case in which the total
demand surpasses the total capacity of the system (see
Figure 7 bottom right). This is an extreme case, where
complete demand satisfaction is not feasible. PRORL
should be able to limit the movement actions and to
reduce the associated management cost.

All the cases share the same environment configuration: we
use a PoP set composed of 4 nodes and a pool of 20 resource



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 10

TABLE II
AVERAGE TOTAL REWARD AND CONFIDENCE INTERVAL FOR THE FOUR SCENARIOS USED FOR SENSITIVITY ANALYSIS USING THE UTILITY

CONFIGURATION REFERRED TO AS “BALANCED”.

Utility (↑) Surplus (↓) Cost (↓) Remaining Gap (↑)

Constant demand Random −53.163± 16.842 385.6± 184.4 248.7± 6.8 −1546.6± 193.9
Heuristic 116.861± 1.062 155.0± 7.3 236.3± 4.7 −250.2± 6.8
Greedy 116.675± 0.574 156.0± 6.6 234.5± 3.2 −252.0± 3.1
PRORL-no-split 137.995± 0.157 310.8± 0.5 16.9± 0.6 −87.6± 0.9
PRORL 137.693± 0.241 310.6± 0.9 20.3± 2.7 −88.8± 1.1

Local overdemand Random 5.656± 14.373 1099.9± 252.5 248.8± 6.2 −699.7± 119.2
Heuristic 140.784± 0.352 99.1± 1.4 55.8± 0.5 −154.0± 2.5
Greedy 141.912± 0.589 89.6± 5.3 54.0± 1.2 −150.1± 2.8
PRORL-no-split 121.477± 3.396 248.4± 49.9 331.9± 1.8 −125.7± 31.2
PRORL 153.359± 0.3 99.2± 6.5 53.3± 2.7 −50.2± 3.0

Weekly patterns Random 14.596± 12.932 1081.9± 249.9 248.8± 6.2 −634.2± 112.7
Heuristic 159.12± 0.0 18.0± 0.0 36.0± 0.0 −50.0± 0.0
Greedy 159.12± 0.0 18.0± 0.0 36.0± 0.0 −50.0± 0.0
PRORL-no-split 137.547± 2.164 149.0± 25.4 334.5± 0.8 −40.4± 29.6
PRORL 166.984± 0.006 1.0± 0.0 0.4± 0.6 −7.8± 0.3

Global overdemand Random −7.874± 13.628 1105.0± 249.5 248.8± 6.2 −809.9± 117.0
Heuristic 126.248± 0.240 108.0± 0.0 56.0± 0.0 −270.6± 2.0
Greedy 126.248± 0.240 108.0± 0.0 56.0± 0.0 −270.6± 2.0
PRORL-no-split 108.688± 2.583 301.9± 66.6 323.8± 12.4 −208.9± 23.3
PRORL 139.213± 0.134 122.8± 8.4 59.5± 2.9 −153.7± 4.8

units. We set the resource unit size σ = 10 and the utility
weights to the values corresponding to the Balanced setup.
The standard deviation of the synthetic generator is equal
to 1. In this case, in addition to the agent’s initial state,
we also initialize the synthetic generator using 10 different
random seeds to ensure statistical validity of the results. We
explored the hyperparameters of our agent and we found that
the best configuration used for the real-world dataset is the
best also for the synthetic data. Due to the simpler nature of
the problem, we set the experience replay capacity to 6000, the
bootstrapping phase contains 3000 steps, and the total number
of training steps was set to 86400 for all the cases apart from
the Weekly patterns case that was trained for 168000 steps.

C. Baselines

We evaluate PRORL by comparing its performance against
the following baselines:

• Random policy picks the two sub-actions by sampling
uniformly from the action spaces A(St);

• Heuristic policy always selects the PoPs with the highest
remaining gap and the highest surplus (if any) for the
nadd and nremove actions respectively, otherwise it waits;

• Greedy policy emulates the movement for each of the
actions that are one time step away in the MDP, and
greedily chooses the action resulting in the highest utility;

• PRORL-no-split is an RL agent identical to the proposed
solution, with the sole exception that the action space
has not been split into two sub-actions, resulting in a
combinatorial set of possible actions.

VI. EXPERIMENTAL RESULTS

A. Evaluation using Real-world Data

Figure 8 presents the cumulative utility for the 4 different
configurations of the utility function, while Figure 9 illustrates
the cumulative surplus (first row), movement cost (second
row), and remaining gap (last row). Overall, the results confirm

the superiority of PRORL in simultaneously optimizing the 3
objectives. Only in the Efficiency setup the Greedy baseline
obtains similar total utility, while in the remaining setups our
solution greatly outperforms the four baselines. In terms of
single objectives, let us highlight the diverse behaviors given
the fact that the utility function setup weighs the 3 objective
components differently. The different prioritization of the
remaining gap component is evident between the Efficiency
and the Strict Quality of Service setups. The opposite behavior
occurs for the surplus: in the Efficiency setup the surplus is
one of the lowest among the baselines, while the remaining
gap is one of the highest. In contrast, a static policy such
as the Heuristic cannot prioritize different components of the
objective differently, and maintains identical values across
the different setups. In terms of cost, the Balanced setup
shows that PRORL can satisfy the demand while reducing
the movement cost, while the Greedy baseline always waits
since it leads to the highest reward in the short term.

Finally, analyzing the performance of the two PRORL
agents, the advantage of splitting the action space is imme-
diately apparent. In fact, the performance of PRORL-no-split
is considerably worse than that of PRORL in all four setups. In
particular, in the Efficiency and Balanced setups, PRORL-no-
split can only outperform a Random policy, while in the others
it can compete with other baselines. We believe that the reason
for such poor performance is the greatly increased action space
size, which indeed requires a much longer training phase
to converge. On the other hand, PRORL is more efficient
in requiring fewer steps to derive an effective policy, thus
resulting in superior resource allocation decisions.

B. Sensitivity Analysis with Synthetic Data

Table II presents the overall results obtained using synthetic
data for the 4 sensitivity analysis cases. The columns show
the average total utility as well as the breakdown into the
total surplus, total cost, and total remaining gap. Overall,



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 11

the results show the superiority of PRORL when the data
exhibits well-defined patterns - in fact, in the Weekly patterns
scenario, our agent outperforms the baselines on all the three
components of the objective. In the Constant demand scenario,
our agent trades off a surplus of resources in order to achieve
more than 3× better remaining gap and more than 10× better
cost. Instead, the baselines perform continuous movements due
to the high variation of demand generated in this scenario,
resulting in a larger surplus but much worse remaining gap
and cost. In the Local overdemand scenario, our agent results
in the cheapest solution that satisfies the nodes’ demands the
most (i.e., it has the highest total remaining gap). Also in this
setting, it trades off a surplus of resources for higher total
utility. Considering a more challenging scenario, such as the
Global overdemand, PRORL is still able to outperform the
baseline in terms of total utility and remaining gap by trading
off performance in the other components of the objective.

Finally, comparing the results for our two agents, the
importance of reducing the action space size is once again
evident, even in the case in which the number of possible
actions is small (as we only have 4 nodes). In fact, the
performance of PRORL-no-split is always lower than that of
its optimized counterpart, PRORL, as well as the Heuristic and
Greedy baselines. The only exception is the Constant demand
scenario, in which the performance results are very similar.
This is motivated by the fact that, in this scenario, a good
solution requires waiting most of the time since the load is
constant; therefore, in small setups, having a single agent to
train and no coordination among the two sub-agents might
allow the discovery of similar resource allocation policies.

VII. CONCLUSIONS

In this work, we have demonstrated the advantages of
Deep Reinforcement Learning as an approach for orchestrating
resources in O-RAN deployments. Our solution is capable of
learning the dynamics of a complex environment in which it
operates and make decisions that lead to outperforming greedy
solutions - both over real and synthetic data - while optimizing
three competing components of the objective, namely: demand
satisfaction, resource utilization, and the cost associated to
resource movements. Moreover, we have demonstrated the
flexibility of PRORL, showing that it can be used to tune
the optimization of competing objectives (and corresponding
trade-offs) by changing their weights. Finally, we have also
proven the robustness of our method in challenging scenarios
characterized by high variability in terms of demand profiles
through an extensive sensitivity analysis.

Our future research agenda will focus on the deployment
of PRORL in a real O-RAN deployment environment, which
handles users’ traffic and demands, and on its extension for
orchestration of the lower levels of the O-RAN stack.

REFERENCES

[1] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Transactions on Wireless
Communications, vol. 9, no. 11, pp. 3590–3600, 2010.

[2] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier
for wireless communications,” Physical Communication, vol. 12, pp.
16–32, 2014.

[3] A. Bourdoux, A. N. Barreto, B. van Liempd, C. de Lima, D. Dardari,
D. Belot, E.-S. Lohan, G. Seco-Granados, H. Sarieddeen, H. Wymeer-
sch, J. Suutala, J. Saloranta, M. Guillaud, M. Isomursu, M. Valkama,
M. R. K. Aziz, R. Berkvens, T. Sanguanpuak, T. Svensson, and Y. Miao,
“6G White Paper on Localization and Sensing,” 2020.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, p. 69–74, 2008.

[5] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[6] O-RAN Alliance. (2019) O-RAN Software Community. [Online].
Available: https://www.o-ran.org/

[7] 3GPP, “Study on New Radio Access Technology: Radio Access
Architecture and Interfaces,” 3rd Generation Partnership Project
(3GPP), Technical Report (TR) 38.801, 2017, version 14.0.0. [Online].
Available: http://www.3gpp.org/DynaReport/38801.htm

[8] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” IEEE Communications Surveys & Tutorials, pp.
1–1, 2023.

[9] O-RAN Working Group 1, “O-RAN Operations and Maintenance
Interface 4.0,” Technical Specification (TS), 2020, O-RAN.WG1.O1-
Interface.0-v04.00.

[10] ——, “NR; Radio Resource Control (RRC); Protocol Specification,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 38.331, 2018, version 15.0.0. [Online]. Available: http://www.
3gpp.org/DynaReport/38331.htm

[11] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA) and
NR; Service Data Adaptation Protocol (SDAP) Specification,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
37.324, 2022, version 17.0.0. [Online]. Available: http:////www.3gpp.
org/DynaReport/37324.htm

[12] M. Shehata, A. Elbanna, F. Musumeci, and M. Tornatore, “Multiplexing
Gain and Processing Savings of 5G Radio-Access-Network Functional
Splits,” IEEE Transactions on Green Communications and Networking,
vol. 2, no. 4, pp. 982–991, 2018.

[13] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri, “A multi-source
dataset of urban life in the city of Milan and the Province of Trentino,”
Scientific Data, vol. 2, no. 1, p. 150055, 2015.

[14] L. Chen, T.-M.-T. Nguyen, D. Yang, M. Nogueira, C. Wang, and
D. Zhang, “Data-Driven C-RAN Optimization Exploiting Traffic and
Mobility Dynamics of Mobile Users,” IEEE Transactions on Mobile
Computing, vol. 20, no. 5, pp. 1773–1788, 2021.

[15] T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement Learn-
ing Based Dynamic Function Splitting in Disaggregated Green Open
RANs,” in IEEE ICC’21, 2021, pp. 1–6.

[16] E. Coronado, S. Siddiqui, and R. Riggio, “Roadrunner: O-RAN-based
Cell Selection in Beyond 5G Networks,” in NOMS’22, 2022, pp. 1–7.

[17] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep Reinforcement Learning for Resource Management
in Network Slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[18] M. Yan, G. Feng, J. Zhou, Y. Sun, and Y.-C. Liang, “Intelligent Resource
Scheduling for 5G Radio Access Network Slicing,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 8, pp. 7691–7703, 2019.

[19] M. Peng, K. Zhang, J. Jiang, J. Wang, and W. Wang, “Energy-Efficient
Resource Assignment and Power Allocation in Heterogeneous Cloud
Radio Access Networks,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 11, pp. 5275–5287, 2015.

[20] M. Peng, Y. Wang, T. Dang, and Z. Yan, “Cost-Efficient Resource Allo-
cation in Cloud Radio Access Networks With Heterogeneous Fronthaul
Expenditures,” IEEE Transactions on Wireless Communications, vol. 16,
no. 7, pp. 4626–4638, 2017.

[21] X. Wang, J. D. Thomas, R. J. Piechocki, S. Kapoor, R. Santos-
Rodrı́guez, and A. Parekh, “Self-play learning strategies for resource
assignment in Open-RAN networks,” Computer Networks, vol. 206, p.
108682, 2022.

[22] F. Mungari, “An RL Approach for Radio Resource Management in the
O-RAN Architecture,” in SECON’21, 2021, pp. 1–2.

[23] S.-Y. Lien, D.-J. Deng, and B.-C. Chang, “Session Management for
URLLC in 5G Open Radio Access Network: A Machine Learning
Approach,” in IWCMC’12, 2021, pp. 2050–2055.

[24] L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, and T.-M.-T.
Nguyen, “Deep mobile traffic forecast and complementary base
station clustering for C-RAN optimization,” Journal of Network and

https://www.o-ran.org/
http://www.3gpp.org/DynaReport/38801.htm
http://www.3gpp.org/DynaReport/38331.htm
http://www.3gpp.org/DynaReport/38331.htm
http:////www.3gpp.org/DynaReport/37324.htm
http:////www.3gpp.org/DynaReport/37324.htm


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XX XX 12

Computer Applications, vol. 121, pp. 59–69, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804518302455

[25] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and
W. Jiang, “Dynamic Reservation and Deep Reinforcement Learning
Based Autonomous Resource Slicing for Virtualized Radio Access
Networks,” IEEE Access, vol. 7, pp. 45 758–45 772, 2019.

[26] S. Mondal and M. Ruffini, “Optical Front/Mid-haul with Open Access-
Edge Server Deployment Framework for Sliced O-RAN,” IEEE Trans-
actions on Network and Service Management, 2022.

[27] E. Sarikaya and E. Onur, “Placement of 5G RAN Slices in Multi-tier
O-RAN 5G Networks with Flexible Functional Splits,” in CNSM’21,
2021, pp. 274–282.

[28] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms,” IEEE
Transactions on Mobile Computing, pp. 1–14, 2022.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[30] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, pp. 67–113, 2013.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari With Deep Reinforcement
Learning,” in NeurIPS’13, 2013.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[33] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3, pp. 293–
321, 1992.

[34] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in AAAI’18, 2018.

[35] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in AAAI’16, 2016.

[36] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” in ICLR’16, 2016.

[37] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
ICML’16, 2016.

[38] E. A. Silver, “Operations research in inventory management: A review
and critique,” Operations Research, vol. 29, no. 4, pp. 628–645, 1981.

[39] M. Florian, J. K. Lenstra, and A. Rinnooy Kan, “Deterministic pro-
duction planning: Algorithms and complexity,” Management Science,
vol. 26, no. 7, pp. 669–679, 1980.

[40] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation,
Operation, and Control. John Wiley & Sons, 2013.

[41] R. Baldick, “The generalized unit commitment problem,” IEEE Trans-
actions on Power Systems, vol. 10, no. 1, pp. 465–475, 1995.

[42] Y. Bengio, A. Lodi, and A. Prouvost, “Machine Learning for Combinato-
rial Optimization: a Methodological Tour d’Horizon,” European Journal
of Operational Research, vol. 290, pp. 405–421, 2021.

[43] Unwired Labs. (2008) OpenCelliD - Open Database of Cell Towers &
Geolocation. [Online]. Available: https://opencellid.org/

[44] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR’15, 2015.

Alessandro Staffolani is a Ph.D. candidate in Com-
puter Science and Engineering at University of
Bologna, Italy. He is interested in learning-based
approaches for addressing the optimization of re-
sources by means of scheduling and orchestration,
in the context of distributed systems and network
infrastructure.

Victor-Alexandru Darvariu is a Postdoctoral Re-
search Fellow in the Department of Computer Sci-
ence at University College London, UK, where he
also recently received his PhD. He is interested in
tackling combinatorial optimization problems with
learning-based approaches spanning reinforcement
learning, planning and graph neural networks, as
well as their applications in infrastructure networks
and systems.

Luca Foschini received MSc and PhD degrees
from the University of Bologna, Italy, where he is
Associate Professor of Computer Engineering. His
interests include distributed systems and solutions
for system and service management, management
of cloud computing, context data distribution smart
city scenarios, and management of O-RAN and 5G
virtualized telco infrastructures. He has published
around 240 papers, with around 90 of them on the
major international journals. He is part of the IEEE
ComSoc BoG where he serves as EMEA Director.

Michele Girolami received his M.Sc. and Ph.D.
in Computer Science from the University of Pisa
in 2007 and 2015, respectively. Currently he is a
Researcher at ISTI-CNR at the Wireless Network
Laboratory. He participates to several EU and na-
tional projects. His research interests are mainly
focused on indoor localization, proximity detection,
pervasive computing and Internet of Things. He
has been involved in the organization of several
international workshops and conferences.

Paolo Bellavista received MSc and PhD degrees in
computer science engineering from the University of
Bologna, Italy, where he is a full professor of dis-
tributed and mobile systems. His research activities
span from pervasive wireless computing to online
big data processing under quality constraints, from
edge cloud computing to middleware for Industry
4.0 applications. He has published around 300 pa-
pers, with around 120 of them in major international
journals in the above fields. He serves on several
Editorial Boards of leading IEEE and ACM journals.

Mirco Musolesi is Full Professor of Computer
Science at the Department of Computer Science at
University College London. He is also Full Professor
of Computer Science at the Department of Com-
puter Science and Engineering at the University of
Bologna. Previously, he held research and teaching
positions at Dartmouth, Cambridge, St Andrews and
Birmingham. The focus of his lab is on Artificial
Intelligence and its applications to a variety of
practical and theoretical problems and domains.

https://www.sciencedirect.com/science/article/pii/S1084804518302455
https://opencellid.org/

	Introduction
	Related Work
	Background
	Resource Orchestration with PRORL
	Problem Formulation
	Definition of the MDP

	Experimental Setup
	Real-world Data
	Sensitivity Analysis
	Baselines

	Experimental Results
	Evaluation using Real-world Data
	Sensitivity Analysis with Synthetic Data

	Conclusions
	References
	Biographies
	Alessandro Staffolani
	Victor-Alexandru Darvariu
	Luca Foschini
	Michele Girolami
	Paolo Bellavista
	Mirco Musolesi


